SPECTRO Series #### SPECTRO-3-50-UV-JR - Measuring range typ. 20 mm ... 80 mm - Transmitter power of UV LED can be adjusted for excitation of luminescent marks - Up to 31 colors can be stored - RS232 interface (USB or Ethernet converter is available) - 8x UV LED, 375 nm, focused (AC-/DC-/PULSEoperation or OFF for luminous objects can be switched) - Detection of different luminescent colors - Insensitive to outside light (in AC- or PULSE-operation) - Brightness correction can be activated (STAT/DYN) - Scan frequency max. 35 kHz (in DC- or OFF-operation) - Switching frequency max. 60 kHz - Several TEACH functions (via PC, PLC, or push button) - Various evaluation algorithms can be activated - "BEST HIT" mode ("human color assessment") - Parameterizable via Windows® software, scope function - Temperature compensated - Averaging can be activated (from 1 up to over 32000 values) - 3-color filter detector (true color detector: "human color perception") ### Design # Product name: # **Technical Data** | Model | SPECTRO-3-50-UV-JR | |---|---| | Voltage supply | +24VDC (± 10%), reverse polarity protected, overcurrent protected | | Current consumption | < 220 mA | | Max. switching current | 100 mA, short circuit proof | | Input digital (1x) | IN0 (Pin 3), digital (0V/+24V) | | Outputs digital (5x) | OUT0 OUT4 (Pin 4 8): digital (0V/+24V), npn-/pnp-able (bright-/dark-switching, can be switched) | | Interface | R\$232 | | Pulse lengthening | 0 100 ms, adjustable via PC software | | Averaging | max. 32768 values, adjustable via PC software | | Scan frequency | LED operation, can be switched via PC software: AC operation: max. 20 kHz (depends on parameterization) DC and OFF operation: max. 35 kHz (depends on parameterization) PULSE operation: max. 5 kHz (depends on parameterization) | | Switching frequency | max. 60 kHz | | Transmitter (light source) | 8x UV LED, 375 nm, focused | | Transmitter control | can be switched via PC software: AC operation (LED MODE-AC), DC operation (LED MODE-DC), OFF operation (LED MODE-OFF) or PULSE operation (LED MODE-PULSE) | | Measuring range | typ. 20 mm 80 mm | | Receiver | 3-color filter detector (TRUE COLOR detector, "human color perception"), color filter curves acc. to CIE 1931 | | Receiver gain setting | 8 steps (AMP1 AMP8), adjustable via PC software | | Ambient light | max. 5000 Lux | | Detection range
(half intensity width) | typ. 10 mm at a distance of 10 mm
typ. 17 mm at a distance of 30 mm
typ. 27 mm at a distance of 50 mm
typ. 33 mm at a distance of 70 mm
typ. 40 mm at a distance of 90 mm | | Reproducibility | in the X, Y color range each 1 digit at 12-bit A/D conversion | | Temperature drift X,Y | ΔΧ/ΔΤ; ΔΥ/ΔΤ typ. 0,2 digits/°C (< 0,01% / °C) | | Color difference | $\Delta \mathrm{E} >= 0.5$ | | Color space | X Y INT siM (Lab) | | Color memory capacity | non-volatile EEPROM with parameter sets for max. 31 colors | | Housing dimensions | LxWxH approx. 65 mm x 65 mm x 26 mm (without flange connectors) | | Housing material | aluminum, anodized in black | | Enclosure rating | IP64 | | Connecting cables | to PLC: cab-las8/SPS or cab-las8/SPS-w to PC/RS232 interface: cab-las4/PC or cab-las4/PC-w to PC/USB interface: cab-4/USB or cab-4/USB-w to PC/Ethernet interface: cab-4/ETH | | Type of connector | connection to PLC: 8-pole fem. connector (Binder 712), connection to PC: 4-pole fem. connector (Binder 707) | | Operating temp. range | -20°C +55°C | | Storage temperature range | -20°C +85°C | | EMC test acc. to | DIN EN 60947-5-2 (€ | # **Dimensions** All dimensions in mm # **Connector Assignment** #### **Connection to PLC:** ### 8-pole fem. connector Binder Series 712 Pin: Color: Assignment: white GND (0V) +24VDC (±10%) 2 brown 3 green OUT0 (Digital 0: typ. 0...1V, Digital 1: typ. +Ub - 10%) vellow 5 grey OUT1 (Digital 0: typ. 0...1V, Digital 1: typ. +Ub - 10%) 6 pink OUT2 (Digital 0: typ. 0...1V, Digital 1: typ. +Ub - 10%) blue OUT3 (Digital 0: typ. 0...1V, Digital 1: typ. +Ub - 10%) OUT4 (Digital 0: typ. 0...1V, Digital 1: typ. +Ub - 10%) red Connecting cable: cab-las8/SPS-(length) cab-las8/SPS-w-(length) (angle type, 90°) (standard length 2m) cab-las8/SPS-... (max. length 25m, outer jacket: PUR) cab-las8/SPS-w-... (max. length 25m, outer jacket: PUR) ### **Connection to PC:** ### 4-pole fem. connector Binder Series 707 Pin: Assignment: 1 +24VDC (+Ub, OUT) 2 GND (0V) 3 RxD 4 TxD #### Connection via RS232 interface at the PC: Connecting cable: cab-las4/PC-(length) cab-las4/PC-w-(length) (angle type 90°) (standard length 2m) #### alternative: #### Connection via USB interface at the PC: USB converter (incl. driver software): cab-4/USB-(length) cab-4/USB-w-(length) (angle type 90°) (standard length 2m) #### <u>alternative:</u> # Connection to local network via Ethernet bus: Ethernet converter (incl. software "SensorFinder"): cab-4/ETH-500 (standard length 0.5m) Optional: External CAT5 cable, e.g. cab-eth/M12D-RJ45-flx-(length) cab-4/ETH-500 (length 0.5m, outer jacket: PUR) 4-pole M12 fem. conn. (D-coded) for connection of an external CAT5 cable, e.g. cab-eth/M12D-RJ45-flx-(length) cab-las4/PC-... (max. length 10m, outer jacket: PUR) or cab-las4/PC-w-... (no picture) (max. length 5m, outer jacket: PUR) # Measuring Principle # Measuring principle of color sensors of SPECTRO-3-...-UV series: The SPECTRO-3 provides highly flexible signal acquisition. For example, the sensor can be operated in alternating-light mode (AC mode), which makes the sensor insensitive to extraneous light. It also can be set to constant-light mode (DC mode), which makes the sensor extremely fast and allows a scan-frequency of up to 35 kHz. When the integrated light source of the SPECTRO-3-...-UV color sensor is activated, the sensor detects the radiation that is diffusely reflected from the object to be measured. As a light source the SPECTRO-3-...-UV color sensor uses a UV-LED (375 nm, or 365 nm in case of using an external UV illumination unit SPECTRO-ELS-UV) with adjustable transmitter power to excite the luminescent marking. An integrated 3-fold receiver for the red, green, and blue content of the visible light that is emitted by the luminescent marking is used as a receiver. A special feature here is that the gain of the receiver can be set in 8 steps. This makes it possible to optimally adjust the sensor to almost any luminescent colorant that can be excited in the long-wave UV range (375 nm or 365 nm). The SPECTRO-3 color sensor can be "taught" up to 31 colors. For each of these taught colors it is possible to set tolerances. In X/Y INT or s/i M mode these tolerances form a color cylinder in space. In X/Y/INT or s/i/M mode the tolerances form a color sphere in space. Color evaluation according to s/i M is based on the lab calculation method. All modes can be used in combination with several operating modes such as "FIRST HIT" and "BEST HIT". Raw data are represented with 12 bit resolution. As a special feature the sensor can be taught two completely independent parameter sets. Input INO can then be used to tell the sensor which parameter set it should work with. Color detection either operates continuously or is started through an external PLC trigger signal. The respective detected color either is provided as a binary code at the 5 digital outputs or can be sent directly to the outputs, if only up to 5 colors are to be detected. At the same time the detected color code is visualised by means of 5 LEDs at the housing of the SPECTRO-3. [Please note: Visualisation by means of LEDs not available with SPECTRO-3-...-JR types.] With a TEACH button at the sensor housing the color sensor can be taught up to 31 colors. For this purpose the corresponding evaluation mode must be set with the software. The TEACH button is connected in parallel to the input IN0 (green wire at cable cab-las8/SPS). [Please note: TEACH button not available with SPECTRO-3-...-JR types.] Parameters and measurement values can be exchanged between a PC and the SPECTRO-3 color sensor through the serial RS232 interface. All the parameters for color detection also can be saved to the non-volatile EEPROM of the SPECTRO-3 color sensor through this serial RS232 interface. When parameterisation is finished, the color sensor continues to operate with the current parameters in STAND-ALONE mode without a PC. The sensors of the SPECTRO-3-...-UV series also can be calibrated. Analogous to white-light balancing with color sensors, balancing of the SPECTRO-3-...-UV could be performed to any luminescent color marking. # - #### **Parameterization** #### Windows® user interface: (The current software version is available for download on our website.) The color sensor is parameterized under Windows® with the SPECTRO3-Scope software. The Windows® user interface facilitates the teach-in process at the color sensor and supports the operator in the task of adjustment and commissioning of the color sensor. Moreover, the software features a data recorder function that allows the automatic recording of recorded data and the saving of those at the hard disk of the PC. Under Windows® representation of the color value on a PC in numeric form and in a color chart, and representation of RGB values in a time chart. In addition the current RGB values are displayed as a bar chart. Parameters and measurement values can be exchanged between PC and sensor either through RS232 or Ethernet (using an Ethernet adaptor). Through the interface all the parameters can be stored in the non-volatile EEPROM of the sensor. Tab PARA1 and PARA2 are used for setting parameters such as: - POWER MODE: Light power of the LED LED MODE: Triggering of the internal light source GAIN: Used for setting the gain of the receiver AVERAGE: Averaging over a maximum of 32768 values - INTEGRAL: This function field is used to set the number of scan values (measurement values) over which the raw signal measured at the receiver is summed up. This integral function allows the reliable detection even of extremely weak signals MAXCOL-No.: Number of colors to be checkedOUTMODE: Triggering of the digital outputs - INTLIM: Minimum intensity required for color evaluation - EVALUATION MODE: Various evaluation modes to choose from (FIRST HIT, BEST HIT, MIN DIST, COL5, THD RGB) · CALCULATION MODE: There are 2 methods of teaching a color, which are selectable via CALCULATION MODE. The CALCULATION MODE "X Y INT - 3D" (or "s i M - 3D") uses a color sphere in space with radius TOL. Contrary to this, the CALCULATION MODE "X Y INT - 2D" (or "s i M - 2D") uses a color cylinder in space with radius CTO or siTO and with height ITO or M. The teach process is the same for both methods. Color evaluation according to "s i M - 2D" uses the Lab calculation method In all the evaluation modes teaching of a color can be performed externally through IN0 or by means of the button at the sensor housing [Please note: TEACH button not available with SPECTRO-3-...-JR types.] - TRIGGER: Continuous or external or self trigger - EXTEACH: #### **Parametrization** #### Windows® user interface SPECTRO3-COMFORT-Scope as an alternative to SPECTRO3-Scope: Color sensors of the following types can be quickly parameterised with the SPECTRO3-COMFORT-SCOPE software: SPECTRO-3 (im M34 housing) SPECTRO-3-CL SPECTRO-3-JR SPECTRO-3-SL SPECTRO-3-SLE The software features menu guidance that prompts the user to enter all the relevant parameters. Sensor Instruments GmbH • D-94169 Thurmansbang • Schlinding 11 Tel. +49 (0)8544 9719-0 • Fax +49 (0)8544 9719-13 #### **Firmware Update** ### Firmware update by means of software "ProgramLoader" or "FirmwareLoader": The software "ProgramLoader" or "FirmwareLoader" allows the user to perform an automatic firmware update. The update will be carried out through the RS232 interface. An initialisation file (xxx.ini) and a firmware file (xxx.elf.S) are required for performing a firmware update. These files can be obtained from your supplier. In some cases an additional firmware file for the program memory (xxx.elf.p.S) is also needed, and this file will be automatically provided together with the other two files. **Diagrams** # <u>Diagrams</u>: DETECTION RANGE (HALF INTENSITY WIDTH) and RELATIVE INTENSITY SPECTRO-3-50-UV-JR **Detection range (half intensity width d)** SPECTRO-3-50-UV-JR: 27 mm (typ.) at a working distance of 50 mm Relative intensity SPECTRO-3-50-UV-JR: 100% at a working distance of 15 mm (INTENSITY 2062)