

EXL6 OCS Datasheet for

HE-EXL1E0, HE-EXL1E2, HE- EXL1E3, HE- EXL1E4, HE- EXL1E5, HE-EXL1E6
HEXT371C100, HEXT371C112, HEXT371C113, HEXT371C114, HEXT371C115, HEXT371C116

1. Specifications

	General Specifications								Control & Logic Specifications			
	uired Power eady state)	•	420mA @ 12VDC / 230 mA @24VDC					Control Language Support		uage Support	Advanced LadderLogic Full IEC 1131-3 Languages	
Req	uired Power		25A for <1 ms @ 24VDC							ogram Size	1MB, ma	ximum
	(Inrush)		DCSwitched					& Logic Scan Rate 0.013mS/K			nS/K	
Primar	y Power Rar	ige		10	0-30VDC			Online	Progran	mming Changes	Supported in Adv	anced Ladder
Relat	RelativeHumidity				Non-conden			DigitalInputs			2048	
Clo	ck Accuracy			+/- 20 ppm					I/O Si	upport	Digital Outputs	2048
Cio	citriccuracy		(+/- 1 Minutes per Month)						1,030	ирроге	AnalogInputs	512
	nding AirTe	mp			°C to+60°C						Analog Outputs	512
Sto	rage Temp			-40	°C to +60°C						50,000 (words) Retentive
	Weight				s (without I/			Gene	eral Purn	ose Registers	16,384 (bits)	•
UL/CE			tp://www.heapg.com/Pages/TechSupport/ProductCert.html					16,384 (bits) Non-ret				
02, 02		Europe: h	tp://www.horner-apg.com/en/support/certification.aspx									
	Display Specifications								Connectivity			
Di	splay Type			5.7" VGA TF	T (450 nit ty	pical)		Serial P	orts			
	D 11:									-485 on second Modular Jack (MJ3)		
Resolution			640x480 16-bit (65,536)							USB 2.0 (480MHz) Programming & Data Access USB 2.0 (480MHz) for USB FLASH Drives (2TB)		
Color Screen Memory			27 MB					USB CAN				
3016	screenwemory								V	10/100 Mb (Auto-MDX) Modbus TCP C/S HTTP		
User-Progr	ammable S	creens	1023					Ethernet SMTP, Cscape, Ethernet IP				
	Backlight		LED – 30,000 hourlife					Remote I/O SmartRail, SmartStix, SmartBlock, SmartN				
			User Configurable within the scan time.					Removabl		MicroSD, support for 32GB max.		
Scree	n Update Ra	te	(perceived as instantaneous in many cases)					е		Application Updates, Datalogging, more		
					In	put / Output						
Model	DC In	DC	Relays	HS In	HS Out	mA/V In	mA/V		nA/V		gh-Speed Counters	
		Out	,			· ·	RTD/T		Out	Number of Cour		2
Model 2	12		6	4	_	4				Maximum Frequ	,) kHz each
Model 3	12	12		4	2	2				AccumulatorS		-bits each
Model 4	24	16		4	2	2		_		T-t-!	Modes Supported	
Model 5	12 12	12 12		4	2	1	2 6*	_	2 4*	Totalizer	Qı	ıadrature
Model 6 There a			s of the total		1	igh-speed ou		e total I	-	PulseMeasuren	nent I	equency
			and Pulse Tr	ain Outputs, 4/17 bit Ana	currently lin	s 14/16-bit A nited to <65kl					tion Controlled Outp DFF Setpoint per Out	

2. Dimensions & Panel Cutout

Cutout tolerance to meet NEMA standards is ±0.005" (0.1mm). Max. Panel Thickness is 5mm.

Sept. 29, 2015 Page 1 of 11

3. Installation Procedures

- 1. Carefully locate an appropriate place to mount the EXL6. Be sure to leave enough room at the top of the unit for insertion and removal of the microSD card. Also leave enough room at the bottom for the insertion and removal of USB FLASH drives and wiring
- 2. Carefully cut the host panel per the diagram above, creating a $175 \text{mm} \times 216 \pm 0.1 \text{mm}$ opening into which the EXL6 may be installed. If the opening is too large, water may leak into the enclosure, potentially damaging the OCS. If the opening is too small, the OCS may not fit through the hole without damage.
- 3. Remove all Removable Terminals from the OCS. Insert the OCS through the panel cutout (from the front). The gasket needs to be between the host panel and the OCS.
- 4. Install and tighten the mounting clips (provided in the box) until the gasket forms a tight seal (max torque 7-10 lb-in. [0.8 1.13 Nm])
- 5. Reinstall the I/O Removable Terminal Blocks. Connect communications cables to the serial port, USB ports, Ethernet port, and CAN port as required.

4. Ports & Connectors

Sept. 29, 2015 Page 2 of 11

5. Built-in I/O (Model 2, 3, 4, 5 & 6)

All EXL6 models (except the HE-EXL1E0) feature built-in I/O. The I/O is mapped into OCS Register space, in three separate areas – Digital/Analog I/O, High-Speed Counter I/O, and High-speed Output I/O. Digital/Analog I/O location is fixed starting at 1, but the High- speed Counter and High-speed Output references may be mapped to any open register location. For more details on using the High-Speed Counter and High-Speed Outputs, see the EXL6 OCS User's Manual (MAN0974-01).

Fixed	Digital/Analog	EXL10e Model							
Address	I/O Function	2	3	4	5	6			
	Digital Inputs	1-12	1-12	1-24	1-12	1-12			
9611	Reserved	13-32	13-31	25-31	13-31	13-31			
	ESCP Alarm	n/a	32	32	32	32			
%Q1	Digital Outputs	1-6	1-12	1-16	1-12	1-12			
70021	Reserved	7-24	13-24	17-24	13-24	13-24			
%AI1	Analog Inputs	1-4	1-2	1-2	1-2	1-4 ; 33-3			
70/11	Reserved	5-12	3-12	3-12	3-12	n/a			
%AQ1	Reserved	n/a	1-8	1-8	1-8	1-12			
MAGI	Analog Outputs	n/a	n/a	n/a	9-10	n/a			
	Reserved areas main with other XL			atibility	•				

Default Address*	Counter Function	Models 2-6			
%11601	Status Bits	1-8			
%Q1601	Command Bits	1-32			
%AI0401	Accumulator 1 & 2	1-8			
%AQ0401	Preload & Match Values	1-12			
*Starting Address locations for %I, %Q, %AI & %AQ may be re-mapped by user					

Default Address*	High-Speed Output Function	EXL10e Models 2-6				
%11617	Status Bits	1-8				
%Q1**	Command Bits	1-2				
n/a	n/a	n/a				
%AQ421	PWM or Pulse-Train Parameters	1-20				
*Starting Add	*Starting Address locations for %I & %AQ may be remapped by user					
**Q1-Q2 gg part of the Fixed I/O Map. In High- Speed Output mode they can be used to initiate a Stepper/PTO Move						

Sept. 29, 2015 Page 3 of 11

Model 2 - I/O

					Specifications			
	Digital D	C Inputs			Dig	ital Relay Outputs		
Inputs per Module		12 including 4 configurable HSC inputs			Outputs per Module	6	6 Relay	
Commons per Module			1		Commons per Module		6	
Input Voltage F	Range	12	VDC / 2	4 VDC	Max Output Current per Relay	3A @ 250	VAC, resistive	
Absolute Max. \	/oltage	(3)	35 VDC N	Л ах.	Max. Total Output Current	5A c	ontinuous	
Input Impeda	ince		10 kΩ	2	Max. Output Voltage	275VA	AC, 30 VDC	
Input Current Upper Threshold Lower Threshold	Current Positive Logic hreshold 0.8 mA		-1.6 mA		Max Switched Power	1250\	/AC, 150W	
Max Upper Thre	eshold	-	8 VD0	2	Contact Isolation to Ground	10	00VAC	
Min Lower Three	eshold		3 VD0	2	Max. Voltage Drop at Related Current		0.5V	
OFF to ON Res	ponse	1 ms		i	Expected life (see below derating chart for detail)	No Load: 5,000,000 Rated Load: 100,000		
ON to OFF Res	ponse	1 ms		1	Max. Switching Rate		M at no load at rated load	
HSC Max. Switch	ing Rate	10 kHz Totalizer/Pulse, Edges 5 kHz Frequency/Pulse, Width 2.5 kHz Quadrature		Pulse, Width	Type Response Time		nical Contact adder scan plus 10ms	
				An	alog Inputs, Medium Resolution			
Number of channels		4			Input Ranges	0	10 VDC -20mA -20mA	
Safe input voltage ra	Safe input voltage range		-0.5V to 12V		Input impedance (clamped @ -0.5VDC to 12 VDC	Current Mode: 100 Ω	Voltage Mode: 500 k Ω	
Nominal Resolution			10 Bit	s	%Al full Scale	3	32,000	
Max. Over Current			35 m/	4	Conversion Speed	Once per	r Ladder Scan	
Max. Error at 25°C (excluding zero) Adjusting filtering may tighten		4-20 mA 1.00% 0-20 mA 1.00% 0-10 VDC 1.50%*		1.00%	Filtering		ash (noise) filter I running average filter	

Orange† Digital In / Analog In

J1				
(Orange)	Name			
I1	IN1			
12	IN2			
13	IN3			
14	IN4			
15	IN5			
16	IN6			
17	IN7			
18	IN8			
H1	HSC1 / N9			
0V	Common			
A1	Analog IN1			
A2	Analog IN2			
A3	Analog IN3			
A4	Analog IN4			
0V	Common			

removed.

Relay Out / Digital In 230VAC OR

Black

independently configured.

"WARNING: EXPOSURE TO SOME CHEMICALS MAY DEGRADE THE SEALING PROPERTIES OF MATERIALS USED IN THE Tyco relay PC. Cover / case & base: Mitsubishi engineering Plastics Corp. 5010GN6-30 or 5010GN6-30 M8 (PBT)
Sealing Material: Kishimoto 4616-50K (I part epoxy resin)

It is recommended to periodically inspect the relay for any degradation of properties and replace if degradation is found

Page 4 of 11 Sept. 29, 2015

5.2 Model 3 & 4 – I/O

Specifications Specifications									
Digital DC Inputs	Model 3	Model 4	Digital DC Outputs	Model 3	Model 4				
Inputs per Module	12 including 4 configurable HSC inputs	24 including 4 configurable HSC inputs	Outputs per Module	12 including 2 configurable PWM outputs	16 including 2 configurable PWM outputs				
Commons per Module	1		Commons per Module		1				
Input Voltage Range	12 VDC /	24 VDC	Output Type	Sourcing / 1	0 K Pull-Down				
Absolute Max. Voltage	35 VD0	C Max.	Absolute Max. Voltage	28 VDC Max.					
Input Impedance	10 kΩ		Output Protection	Short Circuit					
Input Current	Positive Logic	Negative Logic	Max. Output Current per point	0.5 A					
Upper Threshold	0.8 mA	-1.6 mA	Max. Total Current	4 A Co	ntinuous				
Lower Threshold	0.3 mA	-2.1 mA	Max. Output Supply Voltage	30	VDC				
Max Upper Threshold	8 VI	DC	Minimum Output Supply Voltage	10 VDC					
Min Lower Threshold	3 VDC		Max. Voltage Drop at Rated Current	0.25 VDC					
OFF to ON Response	1 n	ns	Max. Inrush Current	650 mA per channel					
ON to OFF Response	1 n	ns	Min. Load	None					
HSC Max. Switching Rate	500KH	z each	OFF to ON Response	1 ms					
ON to OFF Response	1 n	ns	Output Characteristics	Current Sour	cing (Pos logic)				

J1 (Orange) Positive Logic† Digital & Analog In

J1 (Orange)	Model 3 & 4 Signal Name				
11	IN1				
12	IN2				
13	IN3				
14	IN4				
15	IN5				
16	IN6				
17	IN7				
18	IN8				
H1	HSC1 / IN9				
H2	HSC2 / IN10				
H3	HSC3 / IN11				
H4	HSC4 / IN12				
A1	Analog IN1				
A2	Analog IN2				
0V	Common				

J3 (Orange)	Model 4 only Signal Name
I13	IN13
114	IN14
115	IN15
116	IN16
117	IN17
I18	IN18
I19	IN19
120	IN20
121	IN21
122	IN22
123	IN23
124	IN24
0V	Common

J2 (Black)	Model 3 Name	Model 4 Name				
OV	Common					
V+	V+ *					
NC	No Connect	OUT13				
Q12	OUT12					
Q11	OUT11					
Q10	OUT10					
Q9	OUT9					
Q8	OUT8					
Q7	OUT7					
Q6	OUT6					
Q5	OU	T5				
Q4	OU	T4				
Q3	OUT3					
Q2	OUT2 / PWM2					
Q1	OUT1 / PWM1					
*V+ Supp	oly for Sourcir	ng Outputs				

J4 (Orange)	Model 4 Name
Q16	OUT16
Q15	OUT15
Q14	OUT14

<u>Note:</u> Model 3 uses J1 & and J2 only.

Model 4 uses J1, J2, J3 & J4.

Sept. 29, 2015 Page 5 of 11

5.3 Model 5 – I/O

Di	gital DC Inputs		Digital DC Outputs					
Inputs per Module		onfigurable HSC outs		Outputs per Modu	le	12 including 2 cor	nfigurable PWM outputs	
Commons per Module		1	Commons per Module				1	
Input Voltage Range		/ 24 VDC	Output Type				Sourcing / 10 K Pull-Down	
Absolute Max. Voltage		C Max.		Absolute Max. Volta			/DC Max.	
Input Impedance	10 kΩ		Output Protection				ort Circuit	
Input Current	Positive Logic	Negative Logic	Max. Output Current per point		er point		0.5 A	
Upper Threshold	0.8 mA	-1.6 mA	Max. Total Current		nt	4 A C	Continuous	
Lower Threshold	0.3 mA	-2.1 mA	M	lax. Output Supply V	oltage	3	0 VDC	
Max Upper Threshold	8 V	'DC	Min	imum Output Supply	Voltage	1	0 VDC	
Min Lower Threshold	-	'DC	Max.	Voltage Drop at Rate			25 VDC	
OFF to ON Response		ms		Max. Inrush Curre	nt		v per channel	
ON to OFF Response		ms		Min. Load			None	
HSC Max. Switching		er/Pulse, Edges		OFF to ON Respor			1 ms 1 ms	
Rate		cy/Pulse, Width						
2.5 kHz Quadrature				Output Characteristics Current Sourcing (Positive Log Inputs, High Resolution				
Number of Channels 2			yg ilipu				Range	
Input Ranges (Selectable)	PT and J, K, N, T, E,	0 - 10 VDC, 0 - 20 mA, 4 - 20 mA, 10 PT100 RTD, and J, K, N, T, E, R, S, B Thermocoup		mV E 1652°F to es T 752.0°F to J 1382.0°F		o 32.0°F (1600°C to 0°C) o -328°F (900°C to -200°C) o -400.0°F (400°C to -240°C) f to -346.0°F (750°C to -210°C) f to -400°F (1370°C to -240°C)		
Safe input voltage range	20 mA: RTD / T	-0.5 V to +15 V -0.5 V to +6 V /C: ±24 VDC		Thermocouple Common Mode Range		`	±10V	
Nominal Resolution		A, 100mV: 14 Bits mocouple: 16 Bits		Converter Type			Delta Sigma	
Input Impedance (Clamped @ -0.5 VDC to 12 VDC)	<u>Current Mode:</u> 100 Ω, 35mA Max. Continuous <u>Voltage Mode:</u>			Max. Error at 25°C (*excluding zero)				
		A Max. Continuous		Max Thermocouple Error (After Warm Up Time of One Hour)		ur) ±0.2% (±0.3% below -100°C)	
%Al full scale		10 V, 20 mA, 100 mV: 32,000 counts scale. RTD / T/C: 20 counts / °C		Conversion Speed, Both Channe Converted		nels 10V, 20mA, 100mV: 30 Times/Secon RTD, Thermocouple: 7.5 Times/Secon		
Max. Over-Current		35 mA		Conversion Time per Channel			mA, 100mV: 16.7mS nermocouple: 66.7mS	
Open Thermocouple Detect Current		50 nA		RTD Excitat	ion Current		250 μΑ	

Sort 20, 2015

Name

IN1

IN2

IN3

IN4

IN₅

IN6

IN7

IN8

HSC1 / IN9

HSC2 / IN10

HSC3 / IN11

HSC4 / IN12

No Connect

No Connect

Common

J1

(Orange)

12

13

15

16

17

18

H1

H2

НЗ

H4

NC

NC

0V

J1 (Orange) Positive Logic Digital Inputs

J2 (Black)	Name				
0V	Common				
V+*	Output Power				
NC	No Connect				
Q12	OUT12				
Q11	OUT11				
Q10	OUT10				
Q9	OUT9				
Q8	OUT8				
Q7	OUT7				
Q6	OUT6				
Q5	OUT5				
Q4	OUT4				
Q3	OUT3				
Q2	OUT2 / PWM2				
Q1	OUT1 / PWM1				
	•				

J2 (Black) Positive Logic Digital Outputs

J3 (Orange)	Name					
T1+	Tc (1 +) or RTD (1+) or 100mV (1+)					
T1-	Tc (1-) or RTD (1-) or 100mV (1-)					
T2+	Tc (2+) or RTD (2+) or 100mV (2+)					
T2-	Tc (2-) or RTD (2-) or 100mV (2-)					
AQ1	10V or 20mA Out (1)					
AQ2	10V or 20mA Out (2)					
0V	Common					
MA1	0-20mA In (1)					
V1	0-10V In (1)					
0V	Common					
MA2	0-20mA In (2)					
V2	0-10V In (2)					
0V	Common					

Location of I/O jumpers (JP1-JP4) and wiring connectors (J1-J4) with back cover removed.

Jumper Setting Details

5.4 Model 6 – I/O

5.4.1 Hardware Specification

		Digital DC Outputs				
12				12		
			1			
0 VDC - 24 VDC			Half-Bridge			
			30 VDC Max.			
			Short Circuit & Overvoltage			
10 K32				0.5 A		
Positive Logic	Negat	tive Logic		0.5 A		
0.8 mA	-1.6 m	nΑ		2A total current (all drivers) UL-		
0.3 mA	-2.1 m	nΑ		rated, 6A UL pending		
0 V/DC				30 VDC		
9 ADC				10 VDC		
3 VDC			Voltage			
1 ms				0.25 VDC		
1 ms				None		
				None		
	agativo	hacad on		None		
Common pin le		based on				
None.				150nS		
				150nS		
			PWM Out*	XLE/T/6/10 (65KHz max)		
				XL4/7 EXL6/10 (500KHz max)		
3.5mm Pluggat connector	ole cage	e clamp	Output Characteristics	Current Sourcing (Pos logic)		
6			Absolute max Input Voltage	-0.5 -12V dc. (+/-30Vdc)		
0–20mA, 4-20 i	mA dc.			$T/C / RTD / mV > 2 M\Omega$		
0-60mV, 0-10V dc.				mA: 15 Ω + 1.5 V		
				V: 1.1 MΩ		
RTD - PT100, PT1000			10.23VDC).			
•			Galvanic Isolation	None		
			<u>l</u>	Accuracy		
			00°C / -184 to 1832°E	± 0.2% FS ± 1°C		
				± 0.2% FS ± 1°C		
				± 0.2% FS ± 1°C		
				± 0.2% FS ± 1°C ± 0.2% FS ± 1°C		
				± 0.2% FS ± 3°C		
TUB DT400/4000				± 0.2% FS ± 3°C		
			J C / -328 to 1562°F	± 0.15% FS		
				± 0.15% FS		
				± 0.15% FS		
				± 0.15% FS		
Minimum all ch	annels	converted in	n approx. 150mS.			
			•	<u> </u>		
4			Minimum Current load	500Ω		
4 0 – 10Vdc. 0 – 20mA, 4-20	mA dc		Minimum Current load Galvanic Isolation	500Ω None		
0 – 10Vdc.	mA dc			None Min all channels once per		
0 – 10Vdc. 0 – 20mA, 4-20 12 Bits		scan	Galvanic Isolation	None		
0 – 10Vdc. 0 – 20mA, 4-20 12 Bits			Galvanic Isolation	None Min all channels once per		
	35 VDC Max. 10 kΩ Positive Logic 0.8 mA 0.3 mA 8 VDC 3 VDC 1 ms 1 ms None. Positive and None. Positive and None. 4 - DIN 8-12 XLE/T/6/10 (10 XL4/7 EXL6/10 3.5mm Pluggal connector 6 0-20mA, 4-20 0-60mV, 0-10V T/C - J, K, N, T RTD - PT100, I 14 - 17 Bits (va on ing Input Type TC J TC K TC T TC E TC N TC R, S TC B PT100/1000 0-20mA 0-60mV 0-10V	1 0 VDC - 24 VDC 35 VDC Max. 10 kΩ Positive Logic 0.8 mA 0.3 mA 8 VDC 3 VDC 1 ms 1 ms None. Positive and Negative Common pin level. None. 4 - DIN 8-12 XLE/T/6/10 (10KHz max XL4/7 EXL6/10 (500KHz 3.5mm Pluggable cage connector 6 0-20mA, 4-20 mA dc. 0-60mV, 0-10V dc. T/C - J, K, N, T, E, R, S, RTD - PT100, PT1000 14 - 17 Bits (variable con input type Input Type TC J TC K TC T TC E TC N TC R, S TC B PT100/1000 0-20mA 0-60mV 0-10V	1 0 VDC - 24 VDC 35 VDC Max. 10 kΩ Positive Logic 0.8 mA 0.3 mA -2.1 mA 8 VDC 3 VDC 1 ms 1 ms None. Positive and Negative based on Common pin level. None. 4 - DIN 8-12 XLE/T/6/10 (10KHz max) XL4/7 EXL6/10 (500KHz max) 3.5mm Pluggable cage clamp connector 6 0-20mA, 4-20 mA dc. 0-60mV, 0-10V dc. T/C - J, K, N, T, E, R, S, B RTD - PT100, PT1000 14 - 17 Bits (variable depending on input type) Input Type Range TC J -120 to 100 TC K -130 to 130 TC TC T -130 to 400 TC E -130 to 780 TC R, S 20 to 1768 TC B 100 to 182 PT100/1000 -200 to 850 0-20mA 0-	Commons per Module		

^{*}see I/O information below for detail regarding HSC and PWM

5.4.2 Connection Details

For ease of operability, the high density terminals are divided into more manageable pairs of connectors (J1A + J1B, J2A + J2B, J3A + J3B)

To ensure proper installation, connector symbols must match as seen below:

J1 (Orange/ Green)		Signal Name	0 0 11
	11	V IN1	0 0 13
	12	V IN2	00+
	13	V IN3	15 - 15
	14	V IN4	÷ 0 0 16
	15	V IN5	→
J1A	16	V IN6	-0 0 18
	17	V IN7	- o o H1
	18	V IN8	₩ • H2
	H1	HSC1 / V IN9	- о − нз
	H2	HSC2 / V IN10	□ 0 0 H4
	H3	HSC3 / V IN11	0V
	H4	HSC4 / V IN12	A1A
	0V	Common	20mA Transmitter
	A1A	Univ. Al 1 pin 1	A1C
	A1B	Univ. Al 1 pin 2	N/C
	A1C	Univ. Al 1 pin 3	22000
J1B	N/C	No Connection	T/C - A2A
	A2A	Univ. Al 2 pin 1	+ A2B
	A2B	Univ. Al 2 pin 2	— A2C
	A2C	Univ. Al 2 pin 3	- N/C
	N/C	No Connection	

J3 (Orange/ Green)		Signal Name	— N/C — A3A
	N/C	No Connection	A3B
	A3A	Univ. Al 3 pin 1	Ø [™] A3C
A3B		Univ. Al 3 pin 2	N/C
	A3C	Univ. Al 3 pin 3	A4A
Univ.	N/C	No Connection	A4B
Al	A4A	Univ. Al 4 pin 1	RTD
	A4B	Univ. Al 4 pin 2	A4C
A4C N/C		Univ. Al 4 pin 3	- N/C
	N/C	No Connection	20mA A5A
	A5A	Univ. Al 5 pin 1	Transmitter A5B
	A5B	Univ. Al 5 pin 2	— A5C
	A5C	Univ. Al 5 pin 3	N/C
Univ.	N/C	No Connection	A6A
Al	A6A	Univ. Al 6 pin 1	T/C + A6B
	A6B	Univ. Al 6 pin 2	10000000
	A6C	Univ. Al 6 pin 3	— A6C
	0V	Common	ov
	V4	V OUT4*	V4

\triangleright	(Black/ Green)	Signal Name	V3				
	V3	V OUT 3*	V2 * LOAD 0-10V Out				
	V2	V OUT 2*	V1 + LGAD 0 20mA Out				
	V1	V OUT 1*	mA4 + LOAD				
	mA4	mA Out 4*	mA3				
2A	mA3	mA Out 3*	mA2 —				
	mA2	mA Out 2*	mA1				
	mA1	mA Out 1*	Q1				
	Q1	OUT 1 / PWM1	Q2 LOAD				
	Q2	OUT 2 / PWM2	Q3				
	Q3	OUT 3	Q4 LOAD				
	Q4	OUT 4	Q5 TOAD				
	Q5	OUT 5	Q6 — IOAD —				
	Q6	OUT 6	Q7 1040				
	Q7	OUT 7	Q8				
2B	Q8	OUT 8	Q9				
	Q9	OUT 9					
	Q10	OUT 10	Q10				
	Q11	OUT 11	Q11				
	Q12	OUT 12	Q12				
	V+	V External+	V+ •••				
	0V	Common	0V				
Note * Both mA & V outputs are active for each output channel, however, only the configured output type is calibrated (maximum 4 channels simultaneously).							

Sant 20 2015 Bass 0 of 11

5.4.3 Example Universal Input Wiring Schematic

Note * Both mA & V outputs are active for each output channel, however, only the configured output type is calibrated (maximum 4 channels simultaneously).

Configuration

The data registers are as follows:

Digital Inputs	Digital Outputs	Analogue Inputs	Analogue Outputs		
%I1-12	%Q1-12	%AI1-4, %AI33-38	%AQ9-12		

Note that the first four analogue inputs are mapped to both %Al1-4 and %Al33-36, analogue input channels 5 & 6 are mapped to %Al37 and %Al38 respectively only.

5.4.4 Data values:

The analogue inputs return data types as follows:

Input Mode	Data format	Comment
0-20mA, 4-20mA	0-32000	
0-10V, 0-60mV	0-32000	
T/C, RTD	Temperature in °C or °F to 1 decimal place xxx.y	°C or °F may be selected in the I/O config section. The value is an integer, the user should divide by 10.

5.4.5 Status Register

Register	Description										
%R1	Bit-wise status register enable – R1.1 – R1.9 enable for registers R2 to R9										
%R2	Firmware version										
%R3	Watchdog c	Watchdog count – cleared on power-up.									
%R4	Status bits -	Status bits -			164			2	2 1		
				Rese	rved	Ν	lormal	Config	g Ca		alibration
%R5	Scan rate of	Scan rate of the 106 board (average) in units of 100μS.									
%R6	Scan rate of	Scan rate of the 106 board (max) in units of 100µS.									
%R7	Channel Sta	Channel Status Channel 2					Channel 1				
	8	7 6			5		4	3	2		1
	Open RTD	Out of	Shor	ted	Open T/C		Open RTD	Out of	Sho	rted	Open T/C
		Limits	RTD					Limits RTD)	
%R8	Channel Sta	Channel Status Channel 4 Channel 3									
	8	7	6		5		4 3		2		1
	Open RTD	Out of	Shor	ted	Open T/C		Open RTD	Out of	Sho	rted	Open T/C
	Limits RTD Limits		Limits	RTD							
%R9	Channel Sta	Channel Status Channel 6					Channel 5				
	8	7	6		5		4	3	2		1
	Open RTD	Out of	Shor	ted	Open T/C		Open RTD	Out of	Sho	rted	Open T/C
		Limits	RTD					Limits	RTD)	
%R10-14	Reserved	Reserved									

Note: For the purposes of the example, the block is shown starting at %R1, but it can be set to anywhere in the %R memory map.

Sant 20, 2015 Bass 10 of 11

6. Safety

WARNING: Battery may explode if mistreated. Do not recharge, disassemble or dispose of in fire.

WARNING: EXPLOSION HAZARD – BATTERIES MUST ONLY BE CHANGED IN AN AREA KNOWN TO BE NON-HAZARDOUS

Power input and output (I/O) wiring must be in accordance with Class I, Division 2 wiring methods of the National Electric Code, NFPA 70 for installations in the U.S., or as specified in Section 18-JJ2 of the Canadian Electrical Code for installations within Canada and in accordance with the authority having jurisdiction.

This equipment is suitable for use in Class I, Division 2, Groups A, B, C, and D or Non-hazardous locations only.

WARNING: EXPLOSION HAZARD – Do not disconnect equipment unless power has been switched off or the area is known to be non-hazardous.

WARNING: EXPLOSION HAZARD – Substitution of components may impair suitability for Class 1, Division 2.

Digital outputs shall be supplied from the same source as the Operator Control Station.

WARNING: Only qualified electrical personnel familiar with the construction and operation of this equipment and the hazards involved should install, adjust, operate, or service this equipment. Read and understand this manual and other applicable manuals in their entirety before proceeding. Failure to observe this precaution could result in severe bodily injury or loss of life.

WARNING: To avoid the risk of electric shock or burns, always connect the earth ground before making any other connections.

WARNING: To reduce the risk of fire, electrical shock, or physical injury it is strongly recommended to fuse all Power Sources connected to the OCS. Be sure to locate fuses as close to the source as possible.

WARNING: Replace fuse with the same type and rating to provide protection against risk of fire and shock hazards.

WARNING: In the event of repeated failure, do not replace the fuse again as a repeated failure indicates a defective condition that will not clear by replacing the fuse.

Jumpers on connector JP1 and others shall not be removed or replaced while the circuit is live unless the area is known to be free of ignitable concentrations of flammable gasses or vapors.

7. Common Cause of Analog Input Tranzorb Failure

A common cause of Analog Input Tranzorb Failure on Analog Inputs Model 2, 3, 4 & 5: If a 4-20mA circuit is initially wired with loop power, but without a load, the Analog input could see 24Vdc. This is higher than the rating of the tranzorb. This can be solved by NOT connecting loop power prior to load connection, or by installing a low-cost PTC in series between the load and Analog input.

NOTE†: Refers to Model 2 – orange (pg.5,) Models 3 & 4 – J1 (pg.6) and Model 5 – 20mA Analog In (pg.7.)

8. Technical Support

For assistance and manual updates, contact Technical Support at the following locations:

North America (317) 916-4274 Toll Free: 877-665-5666 http://www.heapg.com

e-mail:techsppt@heapg.com

Europe

(+)353-21-4321-266

http://www.horner-apg.com

e-mail: tech.support@horner-apg.com